

BNL -FNAL - LBNL - SLAC

LARP CM18 May 7-9, 2012 FNAL

Cable Insulation for LHQ and Prototype

Arup K. Ghosh (BNL)

Outline

- Report on discussion at the WG
 - Insulation options
 - Near term plans
 - Open issues
 - Rad Hard Epoxy
 - Cyanate Ester
 - Matrimid

Insulation Options

- Braided Insulation at NEWC
 - Initial development: 10 mm wide LQ cable using S-2 glass with 636 binder
 - Reaction at 640C leaves a lot of carbon residue
 - Recent trials used S-2 glass with Silane binder 933
 - Product literature: 933 sizing is stable at processing of temperature of 670°F and above
 - Trials at LBNL show that 2% by weight is lost by heat treating at 665C
 - CERN is also experimenting with braiding similar yarn.
 - Tests at CERN to 550C show no decomposition of the binder. Tests will be extended to higher temperatures

5-2 glass with 933 binder

High Temperature 933 S-2 Glass® Yarn

- Recent trials with AGY 75 1/0 yarn braided on HQ 15 mm wide cable
- Target 100 mm for HQ and LHQ coils.
- First Trial ~ 30 m

Thickness Meas. Using 10-stacks

 $103 \mu m$

109 μm

 $114 \mu m$

Braided Insulation

- 2nd trial: 100 m of HQ cable
 - Using braiding parameters to yield 100 μm thickness
 - 10-stack measurements at 6 MPa (1 KSI) 103 μm
 - Cable used to wind HQ-C17. Coil is being readied for reaction at BNL

- Plan is to insulate 2 unit lengths of cable for the first two practice coils for LHQ, cable length ~ 320 m.
 - Capture braiding process and QA checks at vendor to ensure a good and reproducible product.

Tape Insulation

- Option to use E-glass (75 μm thick), S2-glass (150 μm thick), Al2O3-SiO2
- Tape insulation typically will produce insulation thickness in the range of 125-150 μm, half over-lap or double butt-wrap.
- For the 11 T model magnet FNAL is using E-glass tape wrap for cable insulation. Prior use in a TQ coil was quite successful.

LBL Tape wrapping line

Rad-Hard Epoxy

- Some options:
 - Cyanate Ester (CTD-403)
 - Cyanate Ester / Epoxy Blend (CTD-425)
 - Matrimid 5292
 - Any others??
- New materials need to be qualified:
 - Make and test 10-stacks.
 - Compare with current epoxy CTD-101k:
 - Electrical
 - Mechanical
 - Cryogenic
- Use same tooling or replicate for use at another lab.
 - Need to be consistent in sample prep and testing in order to make accurate comparisons.

Rad-Hard Epoxy

- Matrimid has issue with temperature / viscosity
 - High working temperature 125 C/ short pot life ~ 60 mins
 - High cure temperature 200 250 C
 - Lines need to be actively heated to prevent solidification / blocked lines.
- CTD-425 Epoxy / Cyanate Ester Blend (60 / 40).
 - Mixing / Processing Temperature 45-60 C
 - Cure: Slow ramps, 22 hours at 100 C, 24 hours at 170 C.

Rad-Hard Epoxy

- Cyanate Ester / Blends have safety issues with possible exothermic reaction.
 - Need precise control of epoxy temperature from mixing through impregnation.
 - Additional TC's on impreg. fixture, some deep close to the coil not just on surface as now.
 - Need to establish control system for epoxy pot during mixing, degassing and impregnation.
 - Need ability to cool epoxy pot.
 - May need ability to cool impregnation fixture.
 - ITER is using blend CTD-425.
 - Can we learn from them about how to handle material safely.

Matrimid Investigation at FNAL

Steve Krave, Rodger Bossert Marianne Bossert

- Building on previous experience
- Developed tooling to impregnate 36" coil stacks
- Successful impregnation of 36" cable stacks
- Follow-up with impregnating a TQ Coil
- Plan to Use 10-stack for material characterizations at room temp and 77K(or 4.2K)
 - TQ cable with Cynate Ester*, Matrimid and CTD
 - HQ cable
 - 11 T cable
- Two TQ 10- stacks have been completed and are awaiting testing:
 - TQ-Matrimid and TQ-CTD101k

Potting with CTD-101

Matrimid Potted Samples

Cure at 200C

Cure at 250C

Summary

- For the LHQ present plan is to braid using S-2 glass with 933 binder
- Reliability of process at vendor is yet to be established
- Development of Rad-hard Epoxy
 - BNL developing impregnation with Cyanate Ester CTD-425
 - Drawback is one of handling, tempearture control
 - FNAL is investigating Matrimid
 - Drawback is short pot-life and higher cure temperatures
 - 10-stack measurements for demonstrating mechanical and electrical properties at RT and at cryogenic temperatures